
SDExplorer: a generic toolkit for smoothly exploring
massive-scale sequence diagram

Kaixie Lyu
Tokyo Institute of Technology, Japan

lvkaixie@sa.cs.titech.ac.jp

Kunihiro NODA
Tokyo Institute of Technology, Japan

knhr@sa.cs.titech.ac.jp

Takashi KOBAYASHI
Tokyo Institute of Technology, Japan

tkobaya@cs.titech.ac.jp

ABSTRACT
To understand program’s behavior, using reverse-engineered se-
quence diagram is a valuable technique. In practice, researchers
usually record execution traces and generate a sequence diagram
according to them. However, the diagram can be too large to read
while treating real-world software due to the massiveness of execu-
tion traces.

Several studies on minimizing/compressing sequence diagrams
have been proposed; however, the resulting diagram may be either
still large or losing important information. Besides, existing tools
are highly customized for a certain research purpose. To address
these problems, we present a generic toolkit SDExplorer in this
paper, which is a flexible and lightweight tool to effectively explore
a massive-scale sequence diagram in a highly scalable manner.
Additionally, SDExplorer supports popular features of existing tools
(i.e. search, filter, grouping, etc.). We believe it is an easy-to-use
and promising tool in future research to evaluate and compare the
minimizing/compressing techniques in real maintenance tasks.

SDExplorer is available at https://lyukx.github.io/SDExplorer/.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;

KEYWORDS
scalable sequence diagram explorer, reverse engineering, visualiza-
tion, program comprehension

ACM Reference Format:
Kaixie Lyu, Kunihiro NODA, and Takashi KOBAYASHI. 2018. SDExplorer:
a generic toolkit for smoothly exploring massive-scale sequence diagram.
In ICPC ’18: ICPC ’18: 26th IEEE/ACM International Conference on Program
Comprehension , May 27–28, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3196321.3196366

1 INTRODUCTION
Correctly understanding the runtime behavior of a system is an
important part of software maintenance. Sequence diagrams as
design documents are helpful to achieve this goal as they visualize
the interactions of objects in a sequential way. However, in real-
world software development, due to the fast speed of software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5714-2/18/05.
https://doi.org/10.1145/3196321.3196366

evolution, such design documents are usually out-of-date or even
do not exist.

Reverse-engineered sequence diagrams, which are generated by
visualizing execution traces in a sequence-diagram style, can then
be useful to address this problem [3, 14]. Furthermore, as reverse-
engineered sequence diagrams are generated from real execution
traces, they can capture runtime bindings and thread interactions,
which makes it a potent technique for debugging [1].

The main challenge of this technique is to deal with the “size ex-
plosion” problem, for the reason that execution traces will increase
rapidly at runtime. Due to the massiveness of execution traces,
reverse-engineered sequence diagrams would be too huge to read.
Lots of previous studies aim to solve this problem by compressing
the sequence diagram. Typically, sequence diagrams can be com-
pressed in 2 directions: horizontally and vertically. Horizontally,
grouping objects will cut the number of lifelines. A novel approach
is identifying the most important objects (i.e. core objects) and
grouping objects with a focus on them [11]. The grouping opera-
tion usually decreases the vertical size as well because interactions
between objects in the same group will be ignored after grouping.
Vertically, summarizing loops decrease the number of visible mes-
sages. The loop information is provided in a pre-process [9], or
detected in traces [6].

Although compressing technique can be effective in cutting the
size of a reverse-engineered diagram, important information might
be eliminated (e.g., detailed iterations of a loop are necessary in de-
bugging situations; important messages may be hidden by grouping
their caller/callee objects). Hence, only visualizing and exploring
the compressed diagram by using normal UML sequence diagram
tools are not sufficient for totally comprehending program’s behav-
ior.

Almost all the previous studies developed special tools to address
the “size explosion” problem. However, these existing tools have
following issues:

• The tools will crash when loading huge sequence diagrams.
During Bennett et al.’s survey, they destroyed one instance
because of the huge size [1]. However, real-world software
can produce ultra-size traces in a very short time.

• Each tool is highly customized for a certain purpose in
each research team, which becomes an obstacle to evalu-
ate and compare the effectiveness of existing techniques.
E.g., JIVE [6] is a comprehensive debugging support tool
with an awesome sequence diagram module; however, since
it is a Java debugger plugin of the IDE Eclipse, non-Java pro-
grams are not supported, and even non-Eclipse-based Java
projects have to pay extra efforts to use this tool. Besides, to



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Lyu et al.

Traces

Extracting information
needed to draw

a sequence diagram

ControllerRenderer

Pre-process

Render

Update

Visualized data

Objects
Messages

Fetch
request

Memory
data

A user operation triggers an update request on demand 

(optional)
Groups
Loops

SDExplorer

Database

User
operation

Figure 1: Architecture of SDExplorer

evaluate a new proposed approach, it is necessary to imple-
ment another customized tool from scratch, which brings a
high cost to researchers.

To address these issues, in this paper, we present a tool, SDEx-
plorer , such that:

• Highly scalable: We use virtualization technique to dis-
play the diagram: only a small fragment of a diagram is
actually rendered in a display window (e.g., a display win-
dow includes only around 100 messages and objects while
the entire diagram contains millions of events). The display
window will be moved by user operations on demand so
that it is able to smoothly explore massive-scale sequence
diagrams containing millions of events.

• Publicly available for generic use: Our SDExplorer is
a browser-based tool, which makes it an easy-to-use and
platform-independent tool. SDExplorer is also programming-
language-independent because the tool takes its input (i.e.,
execution trace information) from generic databases. Be-
sides, SDExplorer supports major features of existing tools
(i.e. zooming, searching, filtering, folding/unfolding, etc.).
SDExplorer (including its source code) is publicly available
at https://lyukx.github.io/SDExplorer/.

Moreover, we now continue on enhancing SDExplorer to addi-
tionally support the feature of recording user operations in the near
future (details are explained in section 5). We believe SDExplorer
will become a promising aid to evaluate the effectiveness of trace
summarization and effective exploration techniques in program
comprehension tasks with reverse-engineered sequence diagrams.

2 SDEXPLORER IN A NUTSHELL
2.1 Architecture
Real-world software usually generates massive-scale traces in a
rather short time. SDExplorer supports virtualization with a data-
base, which achieves very high scalability.

Figure 1 shows the architecture of SDExplorer .
The pre-process part in Figure 1 generates the input of SDEx-

plorer . Users of SDExplorer need to prepare execution traces and
optionally groups/loops information as an input of SDExplorer . SD-
Explorer receives the input in a standard json format to store the
data into the database. Techniques of previous studies on trace
summarization (e.g., [10–13]) can be then easily combined with our
tool.

(a)

(b)
Viewer window

Visualized data

New data fetched 
from memory data

Memory 
data

New data fetched 
from database

Cleaned up 
data

Figure 2: View-update strategy of SDExplorer

The input data is stored in a database. Controller loads the input
data onto a memory (the loaded-data is called memory data), then
Renderer renders a part of the memory data as a sequence diagram
on a display.

To explore the sequence diagram smoothly, we implemented a
virtualization mechanism. Figure 2 shows the view-update strategy
of SDExplorer . The viewer window is an area where users can see a
(part of) sequence diagram on a display, and moves according to
users operations like scrolling or executing loop compaction. Se-
quences contained in the area of the visualized data is pre-rendered
by Renderer. Sequences contained in the area of the memory data
is pre-loaded onto a memory by Controller. Once viewer window
passes through the center line of visualized data, as shown in Fig-
ure 2 (b), SDExplorer will clean up 25% data in visualized data and
fetch new data of the same size frommemory data. According to this
data loading, the location of visualized data will move downwards.
Likewise, 25% of the memory data will be cleaned up, and new data
will be loaded. The location of memory data will also be updated.

2.2 Features
In this section, we elaborate the features of SDExplorer that are
listed below. Interactive folding/unfolding and loop summa-
rization are key features to support trace compaction techniques
that are necessary for dealingwithmassive-scale reverse-engineered
sequence diagram.

• Zooming. Users can zoom in/out a diagram by using a
mouse wheel.

• Interactive folding/unfolding. SDExplorer supports (hier-
archical) object grouping. Clicking on a folded group will
unfold it and the hidden messages will appear. Likewise,
clicking on an unfolded group will fold objects in the group
and eliminate messages among them. (see Figure 3 4○⇔ 5○.)
Themotivation of providing this feature is that though group-
ing is a powerful technique to reduce the size of a sequence
diagram, some important information might be hidden by it.
For instance, in Figure 3 (a) and (b), since B and C belong to
one group BC, grouping B and C will eliminate the message
important().

• Loop summarization. Clicking the Compress button on
the toolbar (Figure 5 2○), repetitive messages are summa-
rized with UML combined fragments (Figure 3 6○). Although
users are allowed to provide loop information as an optional



SDExplorer: a generic toolkit for smoothly exploring massive-scale sequence diagram ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Figure 3: SDExplorer’s features to support trace compaction
techniques

input of SDExplorer , a built-in loop detector, which uses
a simplified version of Jayaraman et al.’s algorithm [6], is
implemented in SDExplorer for improving the users’ conve-
nience.

• Searching and filtering. Search is used to locate one mes-
sage. Figure 4 shows how Search works. For the better user
experience, SDExplorer supports interactive search with a
fuzzy query (Figure 4 (b)). Figure 4 (c) shows a search result.
Clicking one of the search result items, the display window
will bemoved to the clickedmessage’s location. Filter takes
a set of objects/groups as filter queries, and then draw a sub-
diagram consisting of the messages among objects/groups
specified as the queries.

• HintboxWhile reading a large-scale sequence diagram, it is
useful to zoom out and read the outline of entire interactions.
In this scenario, texts of messages might be too small to read,
and the caller/callee objects might be out of the screen. It
could be annoying to move or zoom-in several times just for
seeing messages’ texts. To avoid the bothersome situation,
we implemented Hintbox feature: double-clicking on a mes-
sage, a tooltip, which is describing the details of caller/callee
objects and method signature, will pop out. Note that this
hintbox always has a fixed size (i.e., the size never change
by zooming).

3 DEMONSTRATION
To evaluate the usability and scalability of SDExplorer , we made a
demonstration on jpacman, a Java implementation of a traditional
Pac-Man game.

As the pre-process of SDExplorer , we collected an execution
trace and grouping information as follows. We repeated the ap-
proach of Noda et al. [11]: recording traces by using SELogger [7]
and obtaining grouping information by identifying core objects.
After the pre-process, we got 3,109 objects, 29 object-groups, and
3,454,948 messages. Then we eliminated self-calls as a common way

Table 1: Response time of features [sec]

render1 zoom loop2 fold unfold search filter

max 0.52 0.96 1.11 0.11 0.48 6.08 22.68
min 0.43 0.80 0.03 0.02 0.02 1.95 20.06

average 0.49 0.87 0.70 0.06 0.17 3.32 21.20
1 the time elapsing from “loading trace data from the database” to “finish
rendering a sequence diagram on the display”

2 includes both of the built-in loop detection and the loop compaction

for generating an efficient sequence diagram [1]. Finally, 2,554,604
messages remained.

3.1 Scalability
The size of Memory data was set as 5,000 messages and 5,000 ob-
jects, and the size of visualized data was set as 360 messages and
252 objects (the sizes are configurable if necessary). The runtime
environment was macOS 10.13.3, 2.3GHz Intel i5 CPU, 8GB of RAM,
MongoDB v3.4.9, and Chrome version 63.0.3239.132. As an eval-
uation of the scalability, we measured the response time of SD-
Explorer’s features on a reverse-engineered sequence diagram of
jpacman. The result is shown in Table 1.

For the load & render, we recorded the response time in 5
different locations in the diagram and calculated the max, min,
and average value. Similarly, we repeated zooms 5 times from
the largest scale to the smallest scale and measured the response
time. As for the loop, the response time depends highly on the
displayed messages (e.g., summarizing a loop including 15,000 mes-
sages means loading from database 3 times). We randomly chose
5 locations in the diagram, then applied the loop compression to
them and measured the response time. The response time of fold
and unfold also depends highly on the number of objects in a
group and the number of interactions within the group. Choosing
5 groups (including the largest one of 497 objects and smallest one
of 1 object), we measured the response time of fold and unfold.
As for search, we picked five query words randomly and executed
the search for each query word to find messages containing the
query. For filter, we repeated the following procedure 5 times and
measured the response time: we randomly chose 10 objects as a
filter query and executed the filtering (i.e., only 10 objects were left
in the diagram after filtering).

From the result shown in Table 1, most of the features can be
executed within around 1 second; this shows the high scalability of
SDExplorer when treating the massive-scale traces including mil-
lions of events. The response time of search and filter is relatively
large compared with other features. The bottleneck is the response
time of a database query, which we can not make improvement
unless we develop a special database for SDExplorer . However, we
think users do not execute the search and filter features so fre-
quently; thus, the response time is expected to be acceptable during
practical maintenance tasks.

3.2 Trace summarization
SDExplorer provides the features to support visualization of the
results of major trace summarization approaches: loop compaction



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Lyu et al.

Table 2: Trace summarization performance

Raw #msg. LC1#msg. OG2#msg. LC & OG #msg.
2,559k 1,334k (47.88%) 2,555k (0.17%) 65k (97.45%)

1 LC means loop-compaction was applied
2 OG means object-grouping was applied
Each number in the parentheses means space savings:
(1 - (compressed size) / (uncompressed size)) * 100 [%]

and object grouping. In this section, we demonstrate the features
for trace summarization by applying trace summarization to whole
jpacman data. For loop summarization, we used a built-in loop
detection feature. As for grouping objects, we utilized grouping
information obtained by applying the technique of Noda et al. [11].

The summarization result is as shown in Table 2. Table 2 shows
the number of messages in the diagram before/after the trace sum-
marization. From the result, we can see that a large number of mes-
sages disappears by the trace summarization features. Although the
compression ratio is very high, the resulting diagram is still large;
thus, the features for smooth exploration provided by SDExplorer
are necessary. We believe SDExplorer will be a promising aid to
evaluate and compare the usefulness of summarization techniques
and summarized diagrams in future research.

4 RELATEDWORK
There are many approaches to compress a sequence diagram, which
can be used as the pre-process part in SDExplorer .

To reduce the vertical size, summarizing loops is a popular ap-
proach [6, 9, 12, 13]. Jayaraman et al. and Taniguchi et al. developed
original loop detecting algorithms to find continuous repeats [6, 13].
Bohnet et al. proposed novel metrics to measure the similarity be-
tween function-calls for loop summarization [2]. However, perform-
ing loop detection on trace data involves some false positives. A
guaranteed way to identify loop structures is marking the entry and
exit events of every loop while recording traces. Unfortunately, this
approach usually imposes large overhead to record traces. Myers
et al. proposed an optimized way that used debug information to
support locating loops [9]. Another approach is detecting loops
from event patterns in a trace.

Apart from summarizing loops, Hamou-Lhadj et al. presented a
trace summarizing approach based on the removal of implementa-
tion details [5]. Bohnet et al. applied a pruning algorithm to simplify
execution traces [2]. These techniques are also helpful to reduce the
vertical size, and they can be combined with loop summarization
techniques to get a better result.

As for the horizontal reduction of a sequence diagram, a major
approach is object grouping. For a Java project, a simple way is
using package information to group objects [1, 6]. Another way is
to group strongly co-related objects by identifying core objects[11]
or design patterns [10].

In the aspect of visualization, most existing researches use the
standard UML sequence diagram [3, 6, 12]. Bennett et al. and Jayara-
man et al. expanded the standard with several features to support
their research [1, 6] (e.g., Bennett et al. introduced groups based on
package structure of Java projects). Besides, Cornelissen et al. used

circular bundle views to visualize execution traces [4]. Bohnet et al.
applied different techniques to visualize execution traces including
call graphs, call sequences, call matrices, etc. [2]

5 CONCLUSION AND FUTURE DIRECTION
This paper presents SDExplorer , a browser-based and light-weight
tool for smoothly exploringmassive-scale sequence diagrams. SDEx-
plorer takes trace and summarization data as its input and visualizes
it in a sequence diagram format. Our tool achieves a high scala-
bility and solves the freeze/crash problem of existing tools while
loading a large sequence diagram. The tool also provides useful
features like folding/unfolding, loop compaction, filtering, etc. We
believe it is an easy-to-use and promising tool in future research to
evaluate and compare the minimizing/compressing techniques in
real maintenance tasks.

As a part of future work, SDExplorer will support recording
user operations in the near future. Minelli et al. analyzed user
interactions of IDE and quantified program comprehension while
reading source code [8], learning from which we plan to explore
the effectiveness of existing trace summarization techniques in
the aspect of program comprehension by using operation logs of
SDExplorer .

ACKNOWLEDGMENTS
This work was partly supported by MEXT KAKENHI Grant Num-
bers JP26280021 and JP15H02683.

REFERENCES
[1] Chris Bennett, Del Myers, M-A Storey, Daniel M German, David Ouellet, Martin

Salois, and Philippe Charland. 2008. A survey and evaluation of tool features
for understanding reverse-engineered sequence diagrams. Journal of Software:
Evolution and Process 20, 4 (2008), 291–315.

[2] Johannes Bohnet, Martin Koeleman, and Jürgen Döllner. 2009. Visualizing mas-
sively pruned execution traces to facilitate trace exploration. In Proc. VISSOFT.
57–64.

[3] Lionel C Briand, Yvan Labiche, and Johanne Leduc. 2006. Toward the reverse
engineering of UML sequence diagrams for distributed Java software. IEEE
Transactions on Software Engineering 32, 9 (2006), 642–663.

[4] Bas Cornelissen, Andy Zaidman, and Arie van Deursen. 2011. A controlled exper-
iment for program comprehension through trace visualization. IEEE Transactions
on Software Engineering 37, 3 (2011), 341–355.

[5] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. 2006. Summarizing the
content of large traces to facilitate the understanding of the behaviour of a
software system. In Proc. ICPC. 181–190.

[6] S Jayaraman, Bharat Jayaraman, and Demian Lessa. 2017. Compact visualization
of Java program execution. Software: Practice and Experience 47, 2 (2017), 163–191.

[7] Toshinori Matsumura, Takashi Ishio, Yu Kashima, and Katsuro Inoue. 2014.
Repeatedly-executed-method viewer for efficient visualization of execution paths
and states in java. In Proc. ICPC. 253–257.

[8] Roberto Minelli, Andrea Mocci, Michele Lanza, and Takashi Kobayashi. 2014.
Quantifying program comprehension with interaction data. In Proc. QSIC. 276–
285.

[9] Del Myers, Margaret-Anne Storey, and Martin Salois. 2010. Utilizing debug
information to compact loops in large program traces. In Proc. CSMR. 41–50.

[10] Kunihiro Noda, Takashi Kobayashi, and Kiyoshi Agusa. 2012. Execution Trace
Abstraction Based on Meta Patterns Usage. In Proc. WCRE. 167–176.

[11] Kunihiro Noda, Takashi Kobayashi, Tatsuya Toda, and Noritoshi Atsumi. 2017.
Identifying Core Objects for Trace Summarization Using Reference Relations
and Access Analysis. In Proc. COMPSAC. 13–22.

[12] Madhusudan Srinivasan, Jeong Yang, and Young Lee. 2016. Case studies of
optimized sequence diagram for program comprehension. In Proc. ICPC. 1–4.

[13] Koji Taniguchi, Takashi Ishio, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro
Inoue. 2005. Extracting Sequence Diagram from Execution Trace of Java Program.
In Proc. IWPSE. 148–154.

[14] Tewfik Ziadi, Marcos Aurélio Almeida da Silva, Lom Messan Hillah, and Mikal
Ziane. 2011. A fully dynamic approach to the reverse engineering of UML
sequence diagrams. In Proc. ICECCS. 107–116.



SDExplorer: a generic toolkit for smoothly exploring massive-scale sequence diagram ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

A APPENDIX

Figure 4: An example of searching messages

Figure 5: A snapshot of SDExplorer


